

Digital Temperature Control PID Control Function

ปองลูา	
ชนิดของอินพุต	Thermocouple : K, J, R, T, N, S, E, PT100, 0-100 mV
	Voltage : 0-10 VDC
	Current : 4-20 mA
	Process Value (PV) : LED สีเขียว 4 หลัก (7 Segment)
การแสดงผล	Setting Value (SV) : LED สีแดง 4 หลัก (7 Segment)
ฟังก์ชั่นการควบคุม	LED สีแดง : แสดงค่าการทำงานเอาต์พุตและอะลาม
	PID, Heating / Cooling Cycle Time : $1-120 \mathrm{sec}$
	ON/OFF Hyteresis :0-100\% ของสเกลสูงสุด
เอาต์พุต	Relay 5A, 250V, SPDT
	SSR Drive 0-12 VDC (ความต้านทานโหลดต่ำสุด 600
	Voltage 0-10 VDC (ความต้านทานโหลดต่ำสุด $1 \mathrm{k} \Omega$)
ความไวในการทำงาน	Current 4-20 mA. (ความต้านทานโหลดสูงสุด 500 ${ }^{\text {a }}$)
	0.5 sec
ความเที่ยงตรง	0.25% ของสเกลสูงสุด ที่ $25^{\circ} \mathrm{C}$ อุณหภูมิห้อง
หน่วยความจำ	EEPROM
เอาต์พุตของ Alarm Relay	$3 \mathrm{~A}, 250 \mathrm{~V}$, SPDT
แรงดันไฟเลี้ยง	100-250 VAC / 12-30 VDC

การติดตั้ง

ขนาดและรูปร่าง (mm.)

Type	A	B	C	D	a	b
REM48	48	48	10	80	45	45
REM72	72	72	10	80	68	68
REM94	48	96	10	80	45	92
REM95	96	48	10	80	92	45
REM96	96	96	10	80	92	92

วลี่าารสี่งชี่อ

OPERATION FLOW AND SETTING MENU

Power ON				
$\xrightarrow[\text { In }]{\text { PV }}$				
Operation mode display			Press \mp key more than 2 seco กดปุ่ม (F)ค้างประมาณ 2 วินทีี	
		Process and set value display.	g	For edit SV and parameter value
Table1. Select input sensors and setting range.				
Symbol	Input Type		Setting Range / Display Range	
			Non-decimal point	Decimal point
0	Thermocouple Type K		$\begin{aligned} & -200 \sim 1372^{\circ} \mathrm{C} \\ & -328-2501^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -199.9-999.9^{\circ} \mathrm{C} \\ & -199.9 \sim 99.9^{\circ} \end{aligned}$
1	Thermocouple Type J		$\begin{aligned} & -200 \sim 1200^{\circ} \mathrm{C} \\ & -328-2192{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -199.9 \sim 999.9^{\circ} \mathrm{C} \\ & -199.9 \sim 999.9^{\circ} \mathrm{F} \end{aligned}$
2	Thermocouple Type R		$\begin{aligned} & -50 \sim 1768^{\circ} \mathrm{C} \\ & -58-3214^{\circ} \mathrm{F} \end{aligned}$	-
3	Thermocouple Type T		$\begin{aligned} & -200 \sim 400^{\circ} \mathrm{C} \\ & -328 \sim 752^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -199.9 \sim 400.0^{\circ} \mathrm{C} \\ & -199.9 \sim 752.0^{\circ} \mathrm{F} \end{aligned}$
4	Thermocouple Type N		$\begin{aligned} & -200 \sim 1300^{\circ} \mathrm{C} \\ & -328 \sim 2372{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -199.9-999.9^{\circ} \mathrm{C} \\ & -199.9 \sim 99.9{ }^{\circ} \mathrm{F} \end{aligned}$
5	Thermocouple Type S		$\begin{aligned} & -50 \sim 1768^{\circ} \mathrm{C} \\ & -58 \sim 3214^{\circ} \mathrm{F} \end{aligned}$	
6	Thermocouple Type E		$\begin{aligned} & -200 \sim 1000^{\circ} \mathrm{C} \\ & -328 \sim 1832^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -199.9-999.9^{\circ} \mathrm{C} \\ & -199.9 \sim 999.0^{\circ} \mathrm{F} \end{aligned}$
7	DC $0-100 \mathrm{mV}$		-1999-9999 ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & -19.99 \sim 99.99^{\circ} \mathrm{C} / \mathrm{F} \\ & -199.9 \sim 99.9^{\circ} \mathrm{C} / \mathrm{F} \\ & -1.999 \sim 9.999^{\circ} \mathrm{C} / \mathrm{F} \end{aligned}$
8	Pt100		$\begin{aligned} & -200 \sim 850^{\circ} \mathrm{C} \\ & -628 \sim 1652^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & -199.9 \sim 850.0^{\circ} \mathrm{C} \\ & -199.9 \sim 999.9{ }^{\circ} \mathrm{F} \end{aligned}$
11	DC 4-20mA		-1999~9999 ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & -199.9 \sim 999.9^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \\ & -19.99 \sim 99.99^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \\ & -1.999 \sim 9.990^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \end{aligned}$
12	DC 0-10V		-1999~9999 ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & -199.9 \sim 999.9^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \\ & -19.99 \sim 99.99^{\circ} \mathrm{C} / \mathrm{F} \\ & -1.999 \sim 9.999^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \end{aligned}$

ALARM OUTPUT : Process value (PV) to be used as Alarm Output.

PV abnormal : Input indicates "Over" or "Under" by the cut-off of wire and short circuit, alarm output turn on.
Stand-by sequence : After starting operation of step, alarm output does not turn on unless the process value reach the value of OFF position of alarm output.
Alarm output hold : Alarm output holds "ON" unless aftering setting of additional function or resetting the power.

Absolute value (Ex. Alarm Output 1)

7) Low Imint

\qquad

