
GEFRAN

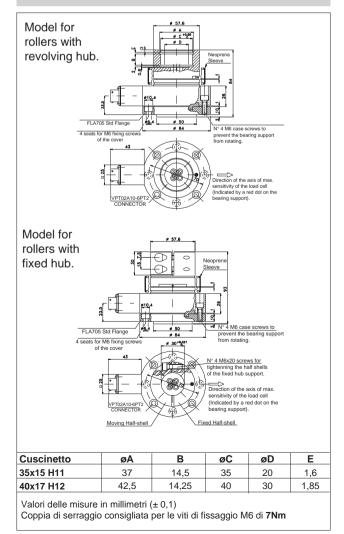
TR FORCE TRANSDUCER FOR MEASURING THE TENSION ON FIXED OR ROTATING SPINDLES

TECHNICAL DATA

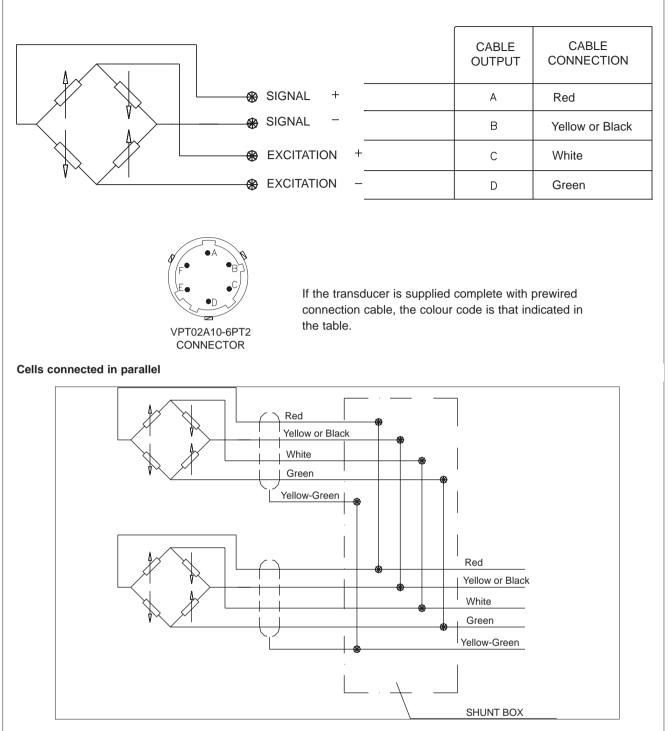
Accuracy	0,50%		
Nominal full scale load (Ln)	100N2kN		
Nominal output at FSO	2mV/V		
Output tolerance at Ln	<± 1% FSO		
Combined errors: Non linearity Histeresis, Repeatibility	< ± 0,5% FSO		
Creep (after 30 min. at Ln)	< ± 0,06% FSO		
Zero load out of balance signal	< ± 1% FSO		
Thermal drift in compensated rangeSensitivity Zero 	< ± 0.005% FSO°C < ± 0.01% FSO°C -		
Nominal bridge resistance	350 Ohm		
Isolation resistance	> 10 GOhm		
Nominal supply voltage	10V		
Maximum supply voltage	15 V		
Compensated temperature range	-10+50°C		
Maximum temperature range	-20+60°C		
Storage temperature range	-30+80°C		
Permitted static load	100% Ln		
Maximum applicable load	300% Ln		
Rupture load	> 500% Ln [6 kN max.]		
Maximum static lateral load	150% Ln		
Maximum elastic deformation at L	n < 0,5 mm		
Grade of protection (DIN40050)	IP65		
Electr. connections: Connector	VPT02A10-6PT2		
Elastic element material	Aluminium (1001kN) Stainless steel (1.5kN - 2 kN)		
Case material	Anodised aluminium (Flange and bearing in AISI 303)		

Main features

- Range of measurement: from 100 N to 2kN
- Accuracy class: 0,5%
- Corrosion resistant
- Internally generated calibration signal
- Orientation of the axis of maximum sensitivity for 35° independently from the position of the fixing holes
- Grade of protection: IP65 (DIN 40050)
- · Integrated protection against overloads


TR series force transducers are used to measure the tension that plastic films or tapes exert on the guide rollers of the machinery used to coil them.

Mounted at the ends of a fixed or transmission shaft on the machine chassis, they perform the function of force sensors and bearing for the ends of the shaft.

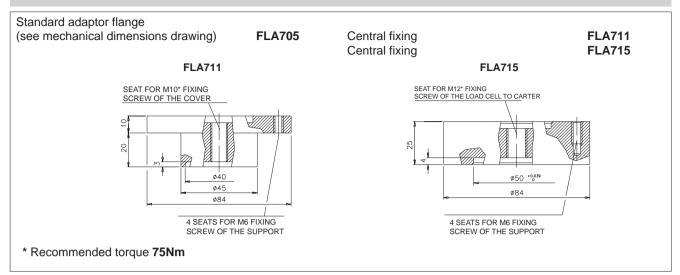

They are used on both fixed and rotating shafts. TR transducers are supplied with the adaptor flange for fixing,

with 4 M6 screws or with one central M10 or M12 screw.

MECHANICAL DIMENSIONS

ELECTRICAL CONNECTIONS

In systems that use several cells, the parallel connection automatically sums the loads on each individual cell.


Using this method of measurement, the maximum load will be the sum of the loads on the individual cells and the sensitivity will be the average value of these cells.

It is important that the user ensures that no cell is stessed beyond its maximum rating under any load condition.

CONVERSION TABLE

Kg	N	Lb
1	9.807	2.205
0.102	1	0.225
0.454	4.448	1

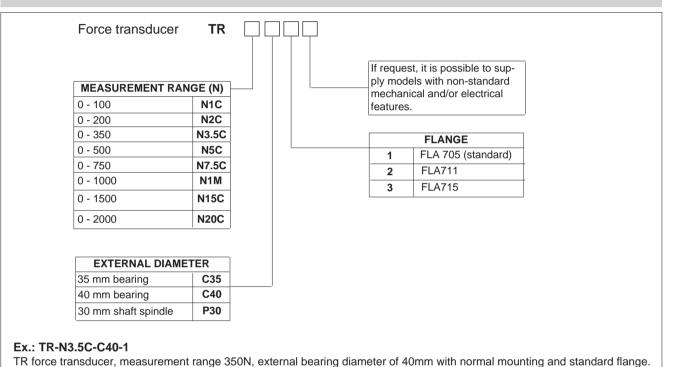
FLANGE

CALCULATION OF RESULTANT APPLIED TO CELL

 $\mathbf{F} = \text{Resultant}$ $\mathbf{T} = \text{Te}$

T = Tension in laminate

P = Roll weight


The red point on the bearing support identifies the axis of maximum cell sensitivity and therefore the direction that F has to take with respect to the transducer.

HORIZONTAL RESULTANT	VERTICAL RESULTANT	DOWNWARD RESULTANT	UPWARD RESULTANT
$F = \frac{T}{2} \bullet 2 \bullet \cos \alpha$	$F = \frac{1}{2} \bullet 2 \bullet \cos \alpha + \frac{1}{2}$	$F = \frac{T}{2} \cdot 2 \cdot \cos \alpha + \frac{P}{2} \cdot \cos \beta$	$F = \frac{T}{2} \cdot 2 \cdot \cos \alpha - \frac{P}{2} \cdot \cos \beta$
This configuration gives the best performance because it does not consider roll weight. It is advised for low tension, to prevent roll weight from representing an excessive fraction of the resultant, with consequent reduction of the usable field. This is the only configura- tion in which, in the absen- ce of tension T, there is a zero signal of approxima- tely 0 mV/V.	In this configuration, roll weight is completely in the direction of maximum sen- sitivity of the cell that gene- rates a signal in mV/V posi- tive. This signal should be consi- dered as tare: it will be con- sidered during calibration of the instrument connected to the cell.	In this configuration, roll weight is completely in the direction of maximum sen- sitivity of the cell that gene- rates a signal in mV/V posi- tive. This signal should be consi- dered as tare: it will be con- sidered during calibration of the instrument connected to the cell.	In this configuration, roll weight is completely in the direction of maximum sen- sitivity of the cell that gene- rates a signal in mV/V negative. This signal should be consi- dered as tare: it will be con- sidered during calibration of the instrument connected to the cell.

OPTIONAL ACCESSORIES

Radial bearing with stop ring (UNI7437-75) and spacer 35 mm 40 mm	PKIT 602 PKIT 600		
Female cable connector Grade of protection IP65	CON 300	Cable colour code	
6-pin connector with 8m (25ft) cable	C08W	Conn.	wires
6-pin connector with 15m (50ft) cable	C15W	Α	Red
	00514/	B	Black
6-pin connector with 25m (75ft) cable	C25W	C	White
6-pin connector with 30m (100ft) cable	C30W	D	Green
Ther lengths consult fasts	consult factory	E	Blue
Other lengths	consult factory	F	Orange
TR application manual	DOC467		

ORDER CODE

GEFRAN spa reserves the right to make any kind of design or functional modification at any moment without prior notice.

GEFRAN spa via Sebina, 74 25050 PROVAGLIO D'ISEO (BS) - ITALIA ph. 0309888.1 - fax. 0309839063 Internet: http://www.gefran.com www.gefranonline.com